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a  b  s  t  r  a  c  t

The  dynamical  behavior  of an  ion  confined  in  a Paul  ion  trap supplied  with  a new  periodic  impulsional
potential  in  the  form  as  f(t)  = V((cos  ˝t  �  1 + k cos  2˝t  �)/(1  − k)); 0 ≤  k  < 1 (�· � means  floor  function)  is
considered  and  eventually  compared  to  the  classical  sinusoidal  case,  k  = 0. The  new  potential  presents
large  zero  potential  temporal  zones  and  the  numerical  integration  of  the  Mathieu  equation  with  the  help
of the  fifth-order  Runge–Kutta  method  showed  some  reduction  in  the  stability  diagrams,  but  for  the
same  ˇ, the  properties  of  the  confined  ions  stayed  the  same.  Also,  for given  operational  parameters  such
eywords:
on
onfinement
aul ion trap
mpulsional potential
ifth-order Runge–Kutta method

as  ˝ =  2˘  ×  1.05  × 106 rad s−1, z0 =  0.783  cm,  and  rf  only  mode  U =  0  (az =  0),  the  potential  difference  Vrf

values  for  m = 1 and  m  =  2  ions  is  found  to be Vrf =  11  V for k =  0 and  Vrf =  130  V for k  =  0.9.  A larger  separation,
about  12  times  for  the  impusional  voltage  compared  to the  classical  sinusoidal  which  in term  means  a
better mass  separations  and  detection.

© 2011 Elsevier B.V. All rights reserved.

ass separation

. Introduction

The confinement of gaseous ions in a Mathieu’s first stability
egion of a radio-frequency linear quadrupole ion trap; two  dimen-
ional confinement, or in a Paul ion trap or quadrupole ion trap
QIT); three dimensional confinement, is a well known process
nd is extensively used in wide variety of experiments and appli-
ations [1–3,5–13]. While, QIT functioning as an ion source or a
ass spectrometer, generally, the device employs classical sinu-

oidal potential form. In the past, with the aim of injecting particle
rom outside into trap and increasing the voltage separations of
ifferent confined masses, a periodic impulsional voltage of the
orm f(t) = V((cos ˝t)/(1 − k cos 2˝t)); 0 ≤ k < 1 was  constructed and
sed [11,14–19,21]. The subject of the present study is devoted to

 general survey of a QIT behavior under the new periodic impu-
ional voltage of the form f(t) = V((cos ˝t  � 1 + k cos 2˝t �)/(1 − k));

 ≤ k < 1. The new potential, for a given k’s value, has a larger zero
otential temporal zones and the first stability diagram compared
o the pervious impulsional voltage form [14–19].  The numerical
ntegration of the Mathieu equation with the help of the fifth-order

unge–Kutta method is explained and the fifth stability diagrams
re studied and compared to the classical sinusoidal. Also, the first
athieu’s stability regions, the ion trajectories both in real time,

∗ Corresponding author. Tel.: +60 389437958; fax: +60 389437958.
E-mail addresses: sarkhosh@math.upm.edu.my, sseddighi2007@yahoo.com
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387-3806/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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r − z plane and phase space, and QIT in rf only mode (az = 0) are
discussed and presented.

2. Runge–Kutta method

To find the stability diagram’s with high accuracy we have used
the higher order Runge–Kutta method (improvements fifth order
Runge–Kutta method) [20] as follows,

yn+1 = yn + h(b1k1 + b2k2 + b3k3 + b4k4 + b5k5),

with

k1 = f (xn, yn),
k2 = f (xn + ha2, yn + ha2k1),

k3 = f
(

xn + ha3, yn + ha3
k1 + k2

2

)
,

k4 = f
(

xn + ha4, yn + ha4
k1 + k2 + k3

3

)
,

k5 = f
(

xn + ha5, yn + ha5
k1 + k2 + k3 + k4

3

)
,

b1, b2, b3, b4 and b5 are the weights chosen so that the parameters
a2, a3, a4 and a5 can be determined and (1/n)

∑n
i=1ki is defined as

the arithmetic mean. For simplicity of the algebra, we  consider f

dx.doi.org/10.1016/j.ijms.2011.08.027
http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
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Fig. 1. Schematic view of a quadrupole ion trap.

s a function of y, without loss of generality. This will reduce the
aylor series expansion of ki, i = 1, 2, 3, 4, 5 to the following,
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ith, b1 = − 3.7783286500685627, b2 = − 0.18312885616492072,
3 = 0.04837565197099888, b4 = − 17.700904612988186,
5 = 22.61398646725067, a2 = 0.6826487126671337,
3 = 2.7638749083367884, a4 = 0.1, and a5 = 0.1.

. Study the motions of ion voltage inside QIT

Fig. 1 shows a schematic view of a quadrupole ion trap (QIT).
he QIT is the ion trap with hyperbolic geometry and is composed
f a ring and two end cap electrodes facing each other in the z-axis.
0 is the distance from the center of the QIT to the end cap and r0 is
he distance from the center of the QIT to the nearest ring surface.
he easiest way to trap a charge particles, is to force the particles
o vibrate and swing in limited space. This force present as,
 = −kR, (1)
f Mass Spectrometry 309 (2012) 63– 69

where R is the distance from the center of swing and k is con-
stant. This force causes the oscillating particle to move around the
equilibrium point will be caused by a parabolic potential as follows,

 ̊ = −
∫

F · dR = 1
2

kR2 = 1
2

k(r2 + z2), (2)

here R2 = r2 + z2, r2 = x2 + y2 and x, y, z are the Cartesian space com-
ponents. Any potential in free space, should satisfy the Laplace
equation as,

∇2
 ̊ = 0. (3)

So that we  see Eq. (2) cannot satisfy in the Laplace condition.
So, to trap the ions in two  dimensions we need to take complex
potential as follows,

˚(x, y, z) = A(˛x2 + ˇy2 + �z2), (4)

to satisfy Eq. (4),  in Laplace condition, ∇2
 ̊ = 0, we  assume,  ̨ =  ̌ = 1,

� = − 2. Therefore,

˚(x, y, z) = A(x2 + y2 − 2z2) = A(r2 − 2z2). (5)

This potential can be produced by four hyperbolic electrodes. To
obtain this form of electrodes, we can consider the surfaces with
same potential ˚0/2 and −˚0/2, as follows,

˚(r0, 0) = ˚0/2 and ˚(0,  z0) = −˚0/2. (6)

With this conditions we can find, A = (˚0)/(2r2
0 ) and A =

(˚0)/(4z2
0), so r2

0 = 2z2
0. Thus, electrodes shape for the potential (4)

are as,

 ̊ = ˚0

2r2
0

(r2 − 2z2) = ±1, (7)

Eq. (7) presents a hyperbolic equations for this potential. The poten-
tial ˚0 is applied to the hyperbolic rod’s can be written as,

˚0 = Udc − Vrf
cos ˝t�1 + k cos 2˝t�

1 − k
with 0 ≤ k < 1. (8)

And for the potential ˚, we have,

 ̊ = ˚0

2r2
0

(r2 − 2z2) = 1

2r2
0

(r2 − 2z2)

(
Udc − Vrf

cos ˝t�1 + k cos 2˝t�
1 − k

)
. (9)

The electric field components in the trap become,

(Er, Ez) = E = −∇˚(r, z), (10)

where ∇ is gradient. From Eq. (10) we  have,

(Er, Ez) =

⎡
⎢⎣

−Udc − (Vrf (cos ˝t�1 + k cos 2˝t�)/(1 − k))

r2
0

r

Udc − (Vrf (cos ˝t�1 + k cos 2˝t�)/(1 − k))

r2
0

2z

⎤
⎥⎦ , (11)

therefore,

Er = −Udc − (Vrf (cos ˝t�1 + k cos 2˝t�)/(1 − k))

r2
0

r, (12)

Ez = Udc − (Vrf (cos ˝t�1 + k cos 2˝t�)/(1 − k))

r2
0

2z. (13)

The equations of motion for a singly charged positive ion in the
QIT are given by,

d2z
(

cos 2��1 + k cos 4��)
d2r

d�2
+

(
ar − 2qr

cos 2��1 + k cos 4��
1 − k

)
r = 0. (15)
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cos  ˝t  � 1 + k cos 2˝t �)/(1 − k) for 0 ≤ k < 1.

The a and q parameters for z and r components as well as the
imensionless parameter � are defined as follows,

 = ˝t

2
, az = −2ar = − 4eUdc

mz2
0˝2

, qz = −2qr = 2(1 − k)eVrf

mz2
0˝2

,(16)

here m is the ion mass and e is the electronic charge. Now, for
 = 0 we have,

d2z

d�2
+ (az − 2qz cos 2�)z = 0, (17)

d2r

d�2
+ (ar − 2qr cos 2�)r = 0. (18)

ith,

 = ˝t

2
, az = −2ar = − 4eUdc

mz2
0˝2

, qz = −2qr = 2eVrf

mz2
0˝2

. (19)
Fig. 2 shows the comparison of periodic impulsional potential
f the form Vrf((cos ˝t  � 1 + k cos 2˝t �)/(1 − k)), presented in this
aper when k = 0 ; 0.2 ; 0.4 ; 0.6 ; 0.8 ; 0.9.

Fig. 4. The second stability region for 
Fig. 3. The first stability region or the QIT with k = 0 ; 0.2 ; 0.4 ; 0.6 ; 0.8 ; 0.9.

4. Results

4.1. Stability regions

There are two  stability parameters which control ion motion for
each dimension u (u = z or u = r); au, qu in the case of quadrupole
ion trap. In the plane (au, qu) for the axis z, the ion stable and
unstable motions are determine by comparing the amplitude of
the movement to one for various values of az, qz.

To compute the accurate elements of the motion equations
for the stability diagrams, a fifth order Runge–Kutta method is
employed. Fig. 3 presents the calculated first stability region
with k = 0 ; 0.2 ; 0.4 ; 0.6 ; 0.8 ; 0.9 and Fig. 4(a) and (b) presents the
calculated second stability region with k = 0 and k = 0.9 for the
quadrupole ion trap using 0.001 steps (h = 0.001) increment in fifth

order Runge–Kutta method. Figs. 3 and 4 show when k increase
from 0 to 0.9 then the apex of the stability parameters az stayed
the same and the apex of the stability parameters qz decrease.

the QIT, (a): k = 0 and (b): k = 0.9.
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In Fig. 3, the first stability diagram is represented by a0, b1, −2a0,
2b1 and in Fig. 4, the second stability diagram is represented by

1, b2, −2a0, −2b1. Here, a0, a1, b1, b2 are as follows [4],
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Table 2
The values of qzmax when az = 0 for the quadrupole ion trap in the first stability region
when k = 0 ; 0.2 ; 0.4 ; 0.6 ; 0.8 ; 0.9.

k 0.0 0.2 0.4 0.6 0.8 0.9
−0.05−0.02

Fig. 7. The ion trajectory in r − z p

2 = 4 − 1
12

q2

(1 − k)2
+ 5

138, 24
q4

(1 − k)4
+ 289

79,  626, 240
q6

(1 − k)6
+ . . . , (23)

Table 1 shows the values of (az, qz) at the lower and upper tips
or the first stability region of a QIT when k = 0 ; 0.9. In other words,
oordinates (az, qz) with minimum and maximum az. To obtain

able 1 values we used the Eqs. (20) and (22). Table 1 values shows
he intersection points of −2a0 with b1 and a0 with −2b1 when

 = 0 ; 0.9.

able 1
he values of (az , qz) at the lower and upper tips for the first stability region of a QIT
hen k = 0 ; 0.9 (coordinates (az , qz) with minimum and maximum az for k = 0 ; 0.9).

k (az , qz)

Lower tip Upper tip

0.0 (−0.67, 1.25) (0.15, 0.78)
0.9 (−0.67, 0.12) (0.15, 0.08)

Fig. 8. The evolution of the phase space ion trajectory for different values of the ph
qzmax 0.91 0.72 0.54 0.36 0.18 0.09

Table 2 is the values of qzmax for the quadrupole ion trap in the
first stability region when k = 0 ; 0.2 ; 0.4 ; 0.6 ; 0.8 ; 0.9 for az = 0. To
obtain this values we find the answers of the equation b1 = 0 when
k = 0 ; 0.2 ; 0.4 ; 0.6 ; 0.8 ; 0.9.

Table 3 shows the values of Vzmax for 131Xe with
 ̋ = 2  ̆ × 1.05 × 106 rad/s, U = Udc = 0 V, z0 = 0.783 cm and az = 0

in the first stability region when k = 0 ; 0.2 ; 0.4 ; 0.6 ; 0.8 ; 0.9. To
obtain the values of Table 3 we  used the following relationship,
Vzmax = mz2
0˝2qzmax

2e(1 − k)
. (24)

ase �0 for ˇz = 0.99, line: k = 0, dot line: k = 0.9, (a) z − ż plan and (b) r − ṙ plan.
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Fig. 9. The stability diagram in (U, V) for m = 1 amu, m = 2 amu,  ̋ = 2

Table  3
The values of Vzmax when az = 0 for 131Xe with  ̋ = 2  ̆ × 1.05 × 106 rad/s, U = Udc = 0 V,
z0 = 0.783 cm in the first stability region when k = 0 ; 0.2 ; 0.4 ; 0.6 ; 0.8 ; 0.9.
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[1] R.E. March, J.F.J. Todd, Practical Aspects of Ion Trap Mass Spectrometry, CRC
Press, New York, 1995.

[2] R.E. March, J. Mass Spectrom. 32 (1997) 263.
k 0.0 0.2 0.4 0.6 0.8 0.9

Vzmax (V) 1812 2265 3020 4529 9059 18,118

Here qzmax is second row values of Table 2. To find the values of
able 3, we suppose Vzmax as function of m, z2

0, ˝2, e and (1 − k) as
ollows,

zmax ∝ mz2
0˝2

2e(1 − k)
. (25)

ow, we use Eq. (25) to calculate Vzmax for 131Xe with
 = 2  ̆ × 1.05 × 106 rad/s and z0 = 0.783 cm when k = 0 ; 0.9 as fol-

ows,

Vzmax = (131/(6.022 × 1026))2 × (0.783 × 10−2)2 × (2�  × 1.05 × 106)2

2 × 1.602 × 10−19 × (1 − 0)
� 1812,

Vzmax = (131/(6.022 × 1026))2 × (0.783 × 10−2)2 × (2�  × 1.05 × 106)2

2 × 1.602 × 10−19 × (1 − 0.9)
� 18,  118.

Fig. 5(a) and (b) shows qzmax and Vzmax as a function of k in a QIT
efined for first stability region when 0 ≤ k < 1, respectively. To plot
ig. 5(a) and (b) we used extended of Tables 2 and 3 when k = 0 up
o 0.9 using 0.1 steps. Fig. 5(a) shows that with increasing k from

 to 1, qzmax decrease and Fig. 5(b) shows that with increasing it k
rom 0 to 1, Vzmax increase also. The higher Vrf will have the better

ass separations especially, for the lower ion mass range.

. Ion trajectories

Figs. 6 and 7 show the ion trajectories in real time and r − z plan
or ˇz = 0.99, respectively, black line: k = 0 and blue line: k = 0.9. Fig. 8
hows the evolution of the phase space ion trajectory for different
alues of the phase �0 for ˇz = 0.99, line: k = 0, dot line: k = 0.9, (a)

 − ż plan and (b) r − ṙ plan. Fig. 9 shows the stability diagram in
U, V) for k = 0 ; 0.9 and (a) m = 1 amu, (b) m = 2 amu.
. Discussion and conclusion

The results of the numerical integration of the Mathieu equa-
ion with the help of the fifth-order Runge–Kutta method showed
 ̆ × 1.05 × 106 rad/s, z0 = 0.783 cm and (a) k = 0, and (b) k = 0.9.

that, the apex of the stability parameters az stayed the same. For
example, the third stability regions has az ≤ 8.683 for k = 0 and
k = 0.9. But, the stability parameter qzmax substantially decreases
for higher k values. In practice, this situation might bring cer-
tain problems for impusional potential because, higher harmonics
have to be amplitude. However, as long as the amplitude of
the harmonic components stays fairly constant, there will be no
problems.

The mechanical properties of an ion under both excitation
potentials; k = 0 and k = 0.9, were compared using the ion displace-
ments such as; the real time, r − z plane and phase space. As far as
first stability concern, and for the same ˇz points (see Figs. 6–8), no
difference found in the ion behaviors.

From the results, it is seen that, a reduction in the first stability
diagrams in the az, qz plane (see Fig. 3) will resulted in the higher
Vrf voltage values (see Figs. 5(b) and 9).

As an example, consider the following QIT operational param-
eters with rf only mode; U = 0 (az = 0),  ̋ = 2  ̆ × 1.05 × 106 rad s−1,
z0 = 0.783 cm.  The values Vrf voltage (correspond to the qzmax ) for
131Xe ion is Vrf = 1812 V for k = 0 and Vrf = 18, 118 V for k = 0.9.
Moreover, with the same operational parameters, the separation
voltages �Vrf for mass range of 1–2 amu  (hydrogen and hydrogen
like isotopes) ions are �Vrf = 11 V for k = 0 and �Vrf = 130 V for k = 0.9
(see Fig. 9). This indicates that, there is about 12 times more con-
fining voltage needed for the impusional voltage compared to the
classical sinusoidal case for the same ion mass-to-charge ratio. The
higher �Vrf the better mass separations especially, for the lower ion
mass range; the amplification of the higher order harmonics in the
impulsional voltage without any distortion. Also, if the impulsional
voltage ejection phase is fixed for a maximum, e.g. cos (˝t) = 1,
higher potential energy will be available for ions to get out of QIT,
and eventually less ion desperation’s.
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